نظریه یادگیری محاسباتی

راهنمای خرید

بر روی کلید قرمز رنگ «اطلاعات بیشتر» کلیک کنید و سپس خرید خود را به صورت نقدی یا اقساطی از فروشگاه مورد نظرتان تکمیل کنید.

نظریه یادگیری محاسباتی شاخه‌ای از ریاضیات و علوم رایانه است که به ارزیابی کارایی الگوریتم‌های یادگیری ماشینی می‌پردازد. این نظریه عموماً به تحلیل الگوریتم‌های یادگیری با نظارت می‌پردازد و سعی…
ارسال سریع
پرداخت در محل
پرداخت آنلاین
تخفیف ویژه
بازگشت محصول
گارانتی

نظریه یادگیری محاسباتی شاخه‌ای از ریاضیات و علوم رایانه است که به ارزیابی کارایی الگوریتم‌های یادگیری ماشینی می‌پردازد. این نظریه عموماً به تحلیل الگوریتم‌های یادگیری با نظارت می‌پردازد و سعی می‌کند کران‌هایی برای کارایی یک الگوریتم در داده دیده‌نشده با استفاده از اطلاعات کارایی آن الگوریتم در داده در دسترس و پیچیدگی الگوریتم بیابد. بعد وی‌سی و یادگیری صحیح احتمالی تخمینی مثال‌هایی از نظریه یادگیری محاسباتی هستند که به ترتیب به اختراع الگوریتم‌های ماشین بردار پشتیبانی و بوستینگ انجامیدند. این نظریه به تحلیل پیچیدگی زمانی الگوریتم‌های یادگیری نیز می‌پردازد.

این درس به کمک آقای امید اعتصامی مدرس IPM و فارغ‌التحصیل دانشگاه برکلی تدریس شده است.

محمد هادی فروغمند، استادیار دانشکده علوم ریاضی دانشگاه شریف می‌باشد. زمینه‌های تحقیقاتی ایشان نظریه گراف و تجزیه و تحلیل شبکه‌های پیچیده، مدل‌های محاسباتی جدید و پیچیده، بیوانفورماتیک، تجزیه و تحلیل توالی ترکیبی و جستجو الگوریتم، الگوریتم‌ها و (ترکیبی) بهینه سازی و فلسفه علوم کامپیوتر است.

ایشان در سال 2001 عضو تیم المپیاد کامپیوتر ایران بودند و در این سال توانستند مدال طلا این مسابقات را کسب کنند و همچنین در سال‌های 2005 و 2007 جز سرپرستان تیم بودند که در هر کدام از سال‌ها مجموعا 4 مدال توسط تیم المپیاد کامپیوتر بدست آمده است.

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “نظریه یادگیری محاسباتی”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

پیشنهادها
پیشنهاد خریداران دیگر