فروشگاه گاج مارکت / کتاب علوم کاربردی، تکنولوژی و مهندسی / کتاب، لوازم تحریر و هنر

کتاب کاربرد روشهای عددی در مدل سازی ریاضی

5% تخفیف ویژه

قیمت اصلی 80.000 تومان بود.قیمت فعلی 76.000 تومان است.

ارسال سریع
پرداخت در محل
پرداخت آنلاین
تخفیف ویژه
بازگشت محصول
گارانتی

کتاب کاربرد روش‌های عددی در مدل‌سازی ریاضی: پل میان تئوری و عمل 🚀

در دنیای پیچیده و روزافزون علوم مهندسی و ریاضیات کاربردی، مدل‌سازی پدیده‌ها و حل مسائل با استفاده از روش‌های تحلیلی همیشه امکان‌پذیر نیست. اینجاست که قدرت شگفت‌انگیز روش‌های عددی به یاری ما می‌آید تا بتوانیم با دقت و ظرافت، پیچیدگی‌ها را به زبان اعداد درآوریم و راهکارهای عملی بیابیم. کتاب «کاربرد روش‌های عددی در مدل‌سازی ریاضی» دقیقاً به همین نیاز اساسی پاسخ می‌دهد و به عنوان یک راهنمای جامع، شما را در این مسیر یاری می‌کند. ما در این کتاب تلاش کرده‌ایم تا با زبانی ساده و در عین حال تخصصی، دریچه‌ای نو به سوی درک و به‌کارگیری این روش‌های قدرتمند بگشاییم.

چرا روش‌های عددی؟ رهایی از بن‌بست‌های تحلیلی 🔓

بسیاری از مسائل واقعی در مهندسی، فیزیک، اقتصاد و سایر علوم، به دلیل پیچیدگی‌های ذاتی یا غیرخطی بودن، فرمول‌های تحلیلی صریح و ساده‌ای ندارند. در چنین شرایطی، روش‌های عددی به ما این امکان را می‌دهند که با تقریب‌های منطقی و گام‌های محاسباتی، به جواب‌های قابل قبولی دست پیدا کنیم. این کتاب به شما نشان می‌دهد که چگونه می‌توان از این روش‌ها برای شبیه‌سازی رفتار سیستم‌ها، پیش‌بینی نتایج و بهینه‌سازی فرآیندها استفاده کرد. با مطالعه این اثر، شما با مفاهیم کلیدی که سنگ بنای این حوزه هستند آشنا می‌شوید و قادر خواهید بود آن‌ها را در پروژه‌های خود به کار بندید.

مبانی و پیش‌نیازها: پایه‌ریزی دانش شما 🏗️

قبل از غرق شدن در جزئیات روش‌های عددی، درک مبانی و پیش‌نیازهای آن امری ضروری است. این کتاب به شما کمک می‌کند تا با مفاهیمی چون خطا در محاسبات عددی، انواع تقریب‌ها و اهمیت انتخاب گام مناسب آشنا شوید. ما درک می‌کنیم که گاهی شروع کار می‌تواند چالش‌برانگیز باشد، بنابراین بخش اول به طور ویژه به این مباحث اختصاص داده شده تا اطمینان حاصل کنیم که شما از یک پایه محکم برخوردار هستید. این دانش پایه، راه را برای درک عمیق‌تر الگوریتم‌های پیچیده‌تر هموار می‌سازد.

روش‌های پرکاربرد در حل معادلات دیفرانسیل 🧮

بخش قابل توجهی از مسائل مهندسی و علمی، با استفاده از معادلات دیفرانسیل توصیف می‌شوند. کتاب «کاربرد روش‌های عددی در مدل‌سازی ریاضی» به تفصیل به روش‌های مختلف حل این معادلات می‌پردازد. شما با روش‌های کلاسیک مانند اویلر و رونگه-کوتا آشنا خواهید شد و کاربرد آن‌ها در مسائل واقعی را مشاهده خواهید کرد. همچنین، روش‌های پیشرفته‌تر که دقت و سرعت بالاتری دارند نیز مورد بررسی قرار گرفته‌اند تا بتوانید بهترین ابزار را برای حل مسئله خود انتخاب کنید.

روش اویلر: ساده‌ترین روش گام به گام برای حل معادلات دیفرانسیل معمولی.
روش‌های رونگه-کوتا: خانواده‌ای از روش‌ها با دقت‌های متفاوت که به طور گسترده در علوم و مهندسی استفاده می‌شوند.
روش تفاضل محدود: رویکردی قدرتمند برای حل معادلات دیفرانسیل جزئی با تقریب زدن مشتق‌ها.

همین حالا خرید خود را ثبت کنید تا به این گنجینه دانش دسترسی پیدا کنید!

روش‌های عددی برای حل دستگاه معادلات خطی و غیرخطی 📏

در بسیاری از مدل‌های ریاضی، با دستگاه‌هایی از معادلات روبرو می‌شویم که حل آن‌ها به صورت تحلیلی دشوار یا ناممکن است. این کتاب به معرفی و تشریح روش‌های متنوعی می‌پردازد که برای حل این دستگاه‌ها طراحی شده‌اند. از روش‌های تکراری مانند گوس-سایدل گرفته تا روش‌های مستقیم مانند تجزیه LU، هر کدام در جای خود کاربردهای ویژه‌ای دارند. شما یاد خواهید گرفت که چگونه ویژگی‌های مسئله، مانند ابعاد دستگاه یا پراکندگی ماتریس، در انتخاب روش مناسب تأثیرگذار است.

درون‌یابی و برون‌یابی: پر کردن شکاف‌ها و پیش‌بینی آینده 📈

یکی دیگر از چالش‌های رایج در تحلیل داده‌ها و مدل‌سازی، داشتن نقاط داده‌ای گسسته و نیاز به تخمین مقادیر بین این نقاط (درون‌یابی) یا خارج از محدوده داده‌های موجود (برون‌یابی) است. این کتاب به شما روش‌های کارآمدی مانند درون‌یابی چندجمله‌ای نیوتن و اسپلاین‌ها را آموزش می‌دهد. درک این تکنیک‌ها به شما کمک می‌کند تا منحنی‌های هموار و منطقی از داده‌های خود ترسیم کنید و پیش‌بینی‌های قابل اعتمادی انجام دهید.

تحلیل عددی در کاربردهای خاص مهندسی و علمی 🔬

فراتر از مباحث پایه، کتاب به تفصیل به کاربرد این روش‌ها در حوزه‌های تخصصی می‌پردازد. شما خواهید دید که چگونه روش‌های عددی در تحلیل تنش و کرنش در سازه‌ها، دینامیک سیالات محاسباتی (CFD)، انتقال حرارت، پردازش سیگنال، و حتی مدل‌سازی‌های مالی به کار می‌روند. درک این کاربردها به شما کمک می‌کند تا ارتباط میان دانش نظری و مسائل عملی را بهتر درک کرده و از این ابزارها در حل چالش‌های مهندسی خود الهام بگیرید.

پرسش و پاسخ‌های متداول

۱. چه تفاوتی میان روش‌های عددی مستقیم و تکراری وجود دارد؟
روش‌های مستقیم در یک تعداد گام محدود به جواب دقیق (در غیاب خطای گرد کردن) می‌رسند، مانند روش حذف گاوسی. در مقابل، روش‌های تکراری با شروع از یک حدس اولیه، به تدریج به جواب نزدیک می‌شوند و تا زمانی که دقت مورد نظر حاصل شود ادامه می‌یابند، مانند روش ژاکوبی یا گوس-سایدل.

۲. چگونه می‌توانم بهترین روش عددی را برای حل مسئله‌ام انتخاب کنم؟
انتخاب بهترین روش به ماهیت مسئله، دقت مورد نیاز، حجم محاسبات و ویژگی‌های داده‌ها (مانند ابعاد و ساختار ماتریس) بستگی دارد. مطالعه دقیق خواص هر روش در کتاب به شما در این انتخاب کمک خواهد کرد.

۳. آیا این کتاب برای دانشجویان رشته‌های غیرریاضی نیز مفید است؟
قطعاً! این کتاب با تمرکز بر کاربردها، برای دانشجویان و مهندسان رشته‌های مختلف مانند مکانیک، عمران، برق، شیمی و حتی علوم کامپیوتر که با مسائل مدل‌سازی سروکار دارند، بسیار سودمند است.

۴. مفهوم “پایداری عددی” در این کتاب چگونه توضیح داده شده است؟
پایداری عددی به این معنی است که خطاهای اولیه یا کوچک در طول محاسبات، منجر به انحراف بزرگ در جواب نهایی نشوند. کتاب این مفهوم را با مثال‌های عملی و تحلیل ریاضی تشریح می‌کند تا بتوانید روش‌های پایدار را شناسایی کنید.

۵. مفهوم “همگرایی” در روش‌های تکراری به چه معناست؟
همگرایی در روش‌های تکراری به این اشاره دارد که دنباله‌ای از جواب‌های تقریبی به سمت جواب حقیقی مسئله میل کند. کتاب شرایط همگرایی برای روش‌های مختلف را بررسی می‌کند.

۶. چگونه می‌توان خطای حاصل از تقریب در روش‌های عددی را کاهش داد؟
کاهش گام محاسباتی، استفاده از روش‌های با مرتبه بالاتر و تکنیک‌های اصلاح خطا می‌توانند به کاهش خطای تقریبی کمک کنند. این کتاب راهکارهای مختلفی را برای مدیریت خطا ارائه می‌دهد.

۷. آیا این کتاب به زبان برنامه‌نویسی خاصی اشاره دارد؟
هدف اصلی کتاب آموزش مفاهیم و الگوریتم‌های روش‌های عددی است، نه یک زبان برنامه‌نویسی خاص. با این حال، درک الگوریتم‌ها به شما امکان می‌دهد آن‌ها را در هر زبان برنامه‌نویسی مانند پایتون، متلب یا سی پلاس پلاس پیاده‌سازی کنید.

۸. چگونه می‌توان از این روش‌ها برای بهینه‌سازی استفاده کرد؟
بسیاری از مسائل بهینه‌سازی به حل معادلات یا تخمین مشتق‌ها نیاز دارند که روش‌های عددی ابزارهای قدرتمندی برای این منظور فراهم می‌کنند.

۹. چه تفاوتی میان روش‌های عددی برای معادلات دیفرانسیل معمولی (ODE) و جزئی (PDE) وجود دارد؟
ODEها به توابع یک متغیر مستقل می‌پردازند، در حالی که PDEها توابع چند متغیر مستقل را شامل می‌شوند. روش‌های حل این دو نوع معادله از نظر گام‌های محاسباتی و ساختار مسئله متفاوت هستند.

۱۰. آیا این کتاب به تحلیل پایداری یا ناپایداری روش‌های عددی می‌پردازد؟
بله، این کتاب به طور جدی به بحث پایداری عددی می‌پردازد و توضیح می‌دهد چگونه می‌توان خطاهای ناشی از محاسبات تقریبی را کنترل کرد تا از انحراف شدید نتایج جلوگیری شود.

۱۱. مفهوم “درون‌یابی چندجمله‌ای” در این کتاب چگونه شرح داده شده است؟
روش‌های مختلف درون‌یابی چندجمله‌ای، مانند درون‌یابی نیوتن و لاگرانژ، برای تخمین مقادیر بین نقاط داده ارائه شده‌اند و کاربردهای آن‌ها بررسی می‌شود.

۱۲. چگونه می‌توان از روش‌های عددی برای تقریب مشتقات استفاده کرد؟
کتاب روش‌های تفاضل محدود (مقدم، تأخری و مرکزی) را برای تقریب مشتقات توابع توضیح می‌دهد که پایه بسیاری از الگوریتم‌های حل معادلات دیفرانسیل هستند.

۱۳. آیا کتاب به مسائل مربوط به مقیاس‌پذیری الگوریتم‌های عددی اشاره دارد؟
درک مقیاس‌پذیری، به خصوص برای مسائل بزرگ، بسیار مهم است. کتاب به طور ضمنی به این موضوع از طریق مقایسه کارایی روش‌های مختلف می‌پردازد.

۱۴. چه تکنیک‌هایی برای حل ماتریس‌های بزرگ و پراکنده در کتاب معرفی شده‌اند؟
روش‌های تکراری مانند گوس-سایدل و حل‌کننده‌های مبتنی بر تجزیه ماتریس برای مواجهه با ماتریس‌های بزرگ و پراکنده معرفی شده‌اند.

۱۵. چگونه می‌توانم درک خود از این روش‌ها را با مثال‌های عملی عمیق‌تر کنم؟
کتاب سرشار از مثال‌های کاربردی و تشریح گام به گام فرآیند حل مسائل است که به شما کمک می‌کند تا مفاهیم را به صورت عملی پیاده‌سازی کنید.

تصویر از کتاب کاربرد روش های عددی در مدل سازی ریاضی
تصویر از کتاب کاربرد روش های عددی در مدل سازی ریاضی

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “کتاب کاربرد روشهای عددی در مدل سازی ریاضی”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

محصولات پیشنهادی