آموزش الگوریتم ژنتیک (الگوریتم تکاملی)

خرید اقساطی
راهنمای خرید

بر روی کلید قرمز رنگ «اطلاعات بیشتر» کلیک کنید و سپس خرید خود را به صورت نقدی یا اقساطی از فروشگاه مورد نظرتان تکمیل کنید.

909.000 تومان

محاسبات نرم از محاسبات تقریبی برای حل مسائل استفاده می‌کند که نتیجه آن راه‌حل‌های خوب برای حل مسائل پیچیده محاسباتی می‌باشد. الگوریتم‌های تکاملی نوعی از محاسبات نرم می‌باشد که با…
ارسال سریع
پرداخت در محل
پرداخت آنلاین
تخفیف ویژه
بازگشت محصول
گارانتی

محاسبات نرم از محاسبات تقریبی برای حل مسائل استفاده می‌کند که نتیجه آن راه‌حل‌های خوب برای حل مسائل پیچیده محاسباتی می‌باشد. الگوریتم‌های تکاملی نوعی از محاسبات نرم می‌باشد که با نگرش به چرخه تکامل طبیعت، راه‌حل مسائل مهندسی و بهینه‌سازی را می‌یابند. جهانی که در آن زیست می‌کنیم گویی توسط یک برنامه کامپیوتری بی نظیر هدایت می‌شود. برنامه ای که میلیاردها سال پیش توسط پروردگار مقتدر و بی‌همتای ما طرح ریزی شده است. در این برنامه‌ی دقیق، ژن‌های برتر مخلوقات در طی زمان حفظ می‌شوند و در مقابل ژن‌های ضعیف و ناکارآمد به‌مرور زمان از بین می‌روند. 

امروزه انسان‌ها از این چرخه طبیعی الهام گرفته‌اند تا مسائل مهندسی و بهینه‌سازی را بهتر حل کنند. پس می‌توان گفت الگوریتم ژنتیک در واقع الهامی از چرخه تکامل طبیعت برای حل مسائل مهندسی به کمک علم کامپیوتر است. 

در دوره آموزشی الگوریتم ژنتیک، ضمن بیان جایگاه این الگوریتم‌ها، منطق و جزئیات الگوریتم‌های تکاملی به‌صورت کامل شرح داده می‌شود و با حل مسائل مختلف و کاربردی در این زمینه تلاش می‌شود یادگیری شما عزیزان به بهترین شکل انجام شود.

 

هدف از یادگیری دوره آموزش الگوریتم ژنتیک چیست؟

هدف از یادگیری این دوره آموزشی فراگیری مفاهیم اساسی و بنیادین الگوریتم‌های تکاملی به ساده‌ترین شکل ممکن می‌باشد و بعد از درک این مهم، مفاهیم به‌صورت عملی پیاده‌سازی می‌شوند تا درک و کاربرد آن برای فراگیر آسان‌تر باشد. یکی از مهم‌ترین الگوریتم‌های تکاملی، الگوریتم ژنتیک می‌باشد که به دلیل جامعیت، اهمیت و کاربرد فراوانی که دارد، در این دوره آموزشی نگاه ویژه‌ای بر آن داشته‌ایم چون درک و استفاده از آن بسیار مهم می‌باشد.

بنابراین هدف اصلی یادگیری دوره آموزشی الگوریتم ژنتیک، پیاده‌سازی عملی آن در مسائلی است که حل آن‌ها با روش های متداول ریاضی میسر نیست.

 

دوره آموزش الگوریتم ژنتیک مناسب چه کسانی می‌باشد؟

این دوره مناسب آن دسته از علاقه‌مندان به مباحث ریاضی است که می‌خواهند مسائل مهندسی خود را به روشی غیر از روش‌های متداول حل کنند، چون برخی از روش‌های بهینه‌سازی همانند مشتق‌گیری و محاسبات ریاضی گاهی اوقات بسیار سخت و وقت‌گیر می‌باشد. همچنین برای بسیاری از مسائل بهینه‌سازی روش‌های متداول ریاضیاتی به‌خاطر مشتق‌ناپذیر بودن، دشواری محاسبات مشتق‌گیری، گاه ناهمگونی و نویزی بودن داده‌ها و … مناسب نیستند. برای حل این مسائل مهندسی در این دوره آموزشی از الگوریتم‌های تکاملی استفاده می‌شود که خود، زیرمجموعه‌ای از محاسبات نرم به‌حساب می‌آیند و در صورت برخورد با این مسائل کارایی لازم را دارند.

پس باید بگوییم اگر می‌خواهید مهندسی شده مسائل پیرامون خود را حل کنید، این دوره آموزشی مناسب شماست. 

 

بعد از فراگیری دوره آموزش الگوریتم ژنتیک چه مهارت‌هایی کسب خواهید کرد؟

این دوره به شما کمک می‌کند منطق الگوریتم‌های تکاملی را به‌صورت کامل یاد بگیرید، با مؤلفه‌های اصلی الگوریتم‌های تکاملی آشنا شوید، به‌صورت عملی یاد می‌گیرد که چگونه یک الگوریتم ژنتیک برای حل مسائل بهینه‌سازی طراحی کنید، همچنین با پیاده‌سازی الگوریتم ژنتیک با زبان برنامه‌نویسی پایتون نیز به‌صورت کاملاً کاربردی آشنا خواهید شد.

به بیان دیگر با پایان این دوره آموزشی و فراگیری مفاهیم پایه و اصولی در الگوریتم ژنتیک، طراحی الگوریتم ژنتیک مناسب با مسئله و پیاده سازی آن به کمک زبان برنامه نویسی پایتون مهارت اصلی شما خواهد بود.

 

ویژگی‌های متمایز دوره الگوریتم ژنتیک چیست؟

در این دوره مفاهیم به زبان ساده و به‌صورت کاملاً متفاوت بیان شده است. مباحث کاربردی گفته‌شده و از توضیحات اضافی فاصله گرفته شده است. همچنین برای جذابیت آموزش و یادگیری بهتر از ابزار لایت بورد، مثال‌های عینی طبیعت، سینما و علم بهره گرفته شده است. 

دوره کامل آموزش الگورتیم ژنتیک

الگوریتم ژنتیک(Genetic Algorithm)  که به اختصار آن را GA می‌نامند، یکی از مدل‌های محاسباتی محبوب است که به کمک هوش مصنوعی توسعه یافته و به کار می‌رود. ایده این مدل از طریق مفهوم تکامل نشات گرفته و نحوه کارکرد آن مشابه فرایند تکامل در طبیعت است. علاوه بر این، پایه و اساس و طرز کار الگوریتم ژنتیک از زیست‌شناسی و شبکه عصبی مصنوعی گرفته شده و هدف آن یافتن بهترین جواب برای مسائل است. متخصصان در زمینه‌های کاری مختلف از الگوریتم ژنتیک برای حل مسائل بهینه‌سازی و عملیات پیچیده ریاضی استفاده می‌کنند.

الگوریتم ژنتیک چیست؟

در چرخه تکامل طبیعت، مجموعه‌ای از ژن‌های گوناگون طی آمیزش‌های ژنتیکی باهم ترکیب می‌شوند و ترکیبات جدید ژنتیکی به وجود می‌آورند که با محیط سازگارتر و کارآمدتر باشد، که درواقع ما در زندگی امروزی، این قضیه را به‌عنوان ارث‌بری ژنتیکی می‌شناسیم. گاهی اوقات ژن‌ها براثر یک‌سری از عوامل و شرایط دچار جهش می‌شوند و ژن‌های جدیدی وارد جهان می‌شوند.

چارلز داروین متخصص علوم طبیعی و زیست‌شناس ماهری بود که تئوری تکامل بیولوژیکی به‌واسطه گزینش یا انتخاب طبیعی را مطرح کرد. وی این فرضیه را به این صورت بیان می‌کند که در طول زمان به دلیل تنوع ژنتیکی گونه های مختلفی از موجودات ایجاد می‌شوند، این گونه ها غالبا به دلیل محدودیت منابع و دشواری های محیطی، می‌بایست برای بقا و تولید مثل با هم رقابت کنند، در چنین رقابتی طبیعتا مخلوقات برتر شانس بیشتری برای زنده ماندن و ایجاد فرزند دارند. به مرور زمان مخلوقاتی که توانمندی و برازندگی بهتری دارند ژن‌های برتر خود را به نسل های بعدی منتقل می‌کنند. نتیجه چنین فرآیندی آن است که با گذشت زمان، بهترین ژن‌ها باقی می‌مانند و بدترین ژن ها منقرض می‌شوند.

مزایای استفاده از الگوریتم ژنتیک

الگوریتم‌های ژنتیک به دلیل داشتن توانایی‌های منحصر به فردشان در حل مسائل پیچیده، به طور فزاینده‌ای محبوب هستند. همچنین در مقایسه با روش‌های سنتی بهینه‌سازی، GA مزایای قابل توجهی ارائه می‌دهد که این الگوریتم را به ابزاری ارزشمند برای طیف گسترده‌ای از کاربردها تبدیل می‌کند. برخی از مزایای کلیدی استفاده از الگوریتم‌های ژنتیک عبارتند از:

·        قابلیت حل مسائل پیچیده

·        جستجوی تصادفی

·        تطبیق پذیری

·        قدرت یافتن راه‌حل‌های خلاقانه

·        کارایی بالا در زمینه‌های متنوع

·        پتانسیل قابل توجه برای یادگیری و سازگاری

کاربردهای الگوریتم ژنتیک

اغلب متخصصان و مهندسان در حوزه‌هایی مانند صنایع، مدیریت تولید، اقتصاد، زیست‌شناسی، برنامه‌نویسی و غیره از الگوریتم ژنتیک برای ساده‌سازی فرایند‌ها استفاده می‌کنند. الگوریتم ژنتیک می‌تواند مشکلات گوناگونی را در مشاغل رفع کند که این کارکردهای گوناگون، شامل موارد زیر می‌شوند:

  • حل مسائل بهینه سازی با الگوریتم ژنتیک: این الگوریتم می‌تواند برای بهینه‌سازی پارامترها، توزیع‌ها یا سایر مسائل بهینه‌سازی که ممکن است فرایند پیچیده‌ای داشته باشند، مورد استفاده قرار گیرد.
  • یادگیری ماشین: الگوریتم ژنتیک در بخش‌هایی از یادگیری ماشین مانند پیدا کردن ساختار بهینه شبکه‌های عصبی مصنوعی و یا بهینه‌سازی پارامترهای مدل‌های یادگیری عمیق مورد استفاده قرار می‌گیرد.
  • سیستم‌های کنترل: در برخی از سیستم‌های کنترل، الگوریتم ژنتیک می‌تواند برای بهینه‌سازی پارامترها و بهبود عملکرد سیستم مورد استفاده قرار گیرد.
  •  دسته‌بندی داده‌ها: در مسائل دسته‌بندی داده‌ها، مانند تشخیص الگوها یا تقسیم داده‌ها به گروه‌های مختلف، الگوریتم ژنتیک می‌تواند به‌عنوان یک روش کارآمد مورد استفاده قرار بگیرد.
  • طراحی سیستم‌های هوش مصنوعی: در طراحی سیستم‌های هوش مصنوعی مانند ربات‌ها و سیستم‌های خودکار، الگوریتم ژنتیک می‌تواند برای بهینه‌سازی و تطبیق با محیط استفاده شود.
  • مسائل تکاملی و بیولوژیکی: الگوریتم ژنتیک به طور معمول برای مدل‌سازی فرآیندهای تکاملی و بیولوژیکی مورد استفاده قرار می‌گیرد.
  • تجزیه و تحلیل عملکرد: در تجزیه و تحلیل عملکرد سیستم‌ها و فرآیندهای مختلف، الگوریتم ژنتیک می‌تواند برای بهینه‌سازی و ارتقا عملکرد مورد استفاده قرار بگیرد.
  • برنامه‌ریزی: الگوریتم ژنتیک می‌تواند در مسائل برنامه‌ریزی مانند برنامه‌ریزی زمانی و تخصیص منابع بهینه مورد استفاده قرار بگیرد.

مراحل الگوریتم ژنتیک

برای بهره‌مندی از الگوریتم ژنتیک در حوزه‌های مختلف، نیاز است که با مراحل و فلوچارت الگوریتم ژنتیک آشنا شوید. به طور کلی، مراحل و فلوچارت الگوریتم ژنتیک عبارتند از:

1. ایجاد جمعیت اولیه: در این مرحله، تعدادی راه‌حل تصادفی برای مساله مورد نظر ایجاد می‌کنیم. هر راه‌حل به عنوان یک کروموزوم نمایش داده می‌شود. به تعداد کروموزوم‌ها در جمعیت اولیه، اندازه جمعیت گفته می‌شود.

2. ارزیابی تناسب: برای هر کروموزوم در جمعیت، تناسب آن را محاسبه می‌کنیم. تناسب نشان‌دهنده کیفیت راه‌حل است. به‌طور کلی، راه‌حل‌هایی که تناسب بالاتری دارند، به احتمال زیاد در مراحل بعدی الگوریتم زنده می‌مانند و تولید مثل می‌کنند.

3. انتخاب: در این مرحله، تعدادی از کروموزوم‌های مناسب را از جمعیت برای تولید مثل انتخاب می‌کنیم. روش‌های مختلفی برای انتخاب کروموزوم‌ها وجود دارد، مانند انتخاب تصادفی با جایگزینی یا انتخاب تناسبی.

4. جفتگیری: در این مرحله، کروموزوم‌های انتخاب‌شده (والدین) به طور جفت با یکدیگر ترکیب می‌شوند تا فرزندان جدید را به وجود آورند. فرآیند جفتگیری همان کراس اور در الگوریتم ژنتیک بوده و شبیه به تولید مثل در موجودات زنده است؛ جایی که هر فرزند ترکیبی از ژن‌های هر دو والدین را به ارث می‌برد.

5. جهش: با احتمال کمی، جهش‌هایی در کروموزوم‌های فرزند ایجاد می‌شود. جهش‌ها تنوع را در جمعیت حفظ می‌کنند و می‌توانند به الگوریتم کمک کنند تا از به دام افتادن در بهینه‌سازی‌های داخلی جلوگیری کند.

6. هم‌نوایی: کروموزوم‌های فرزند با کروموزوم‌های والدین خود هم‌نوا می‌شوند. در این مرحله، بخش‌هایی از کروموزوم‌های والدین با هم ترکیب می‌شوند تا کروموزوم‌های فرزند جدید را ایجاد کنند.

7. تکرار مراحل: مراحل 2 تا 6 را تا زمانی که معیارهای توقف برآورده شوند، تکرار می‌کنیم. معیارهای توقف می‌توانند شامل رسیدن به تعداد نسل‌های مشخص، یافتن راه‌حل با تناسب کافی یا عدم پیشرفت قابل‌توجه در تناسب در نسل‌های اخیر باشند.

توجه داشته باشید در تمامی مراحل بالا می‌توانید از تولباکس الگوریتم ژنتیک استفاده کنید. با استفاده از تولباکس ژنتیک، نه تنها صرفه‌جویی در زمان انجام مراحل مختلف الگوریتم ژنتیک خواهید داشت، بلکه از امکانات و قابلیت‌های آن برای انجام بهینه‌تر و سفارشی‌تر فرآیند الگوریتم ژنتیک نیز بهره‌مند خواهید شد.

آموزش الگوریتم ژنتیک

برای آموزش الگوریتم ژنتیک، مسیرهای گوناگونی وجود دارد که هرکدام مزایا و معایب خاص خود را دارند. در این بین، می‌توان به چندین مسیر آموزشی آنلاین و آفلاین اشاره کرد که شما نیز می‌توانید بسته به هدف و شیوه یادگیری مورد علاقه خود، به آموزش الگوریتم ژنتیک بپردازید. مسیرهای آموزش الگوریتم ژنتیک عبارتند از:

·        دوره و کلاس‌های آنلاین آموزش الگوریتم ژنتیک: این مسیر صرفه‌جویی در زمان و هزینه‌های جانبی را فراهم می‌کند.

·        مقالات مرتبط: این مقالات به شما کمک می‌کنند گام به گام الگوریتم ژنتیک را یاد بگیرید.

·        کتاب‌های آموزش الگوریتم: این کتاب‌ها توضیح خط به خط الگوریتم ژنتیک را ارائه می‌دهند.

·        آموزش الگوریتم ژنتیک در متلب: این مسیر به شما کمک می‌کند تا با استفاده از ابزارهای قدرتمند Matlab مسائل بهینه‌سازی را حل کنید.

·        آموزش انواع الگوریتم ژنتیک از طریق دانشگاه: این مسیر به شما کمک می‌کند تا به یادگیری عمیق الگوریتم ژنتیک بپردازید.

·        کارآموزی: این مسیر به شما امکان کسب تجربه عملی در حوزه الگوریتم ژنتیک را فراهم می‌سازد.

برای انتخاب بهترین مسیر آموزشی، باید با توجه به سابقه تحصیلی، سطح علمی و اهداف خود در این حوزه، از طریق یکی از متدهای آموزشی فوق اقدام کنید. همچنین، می‌توانید با ترکیب مسیرهای آموزشی مختلف، شیوه‌ای نوین برای یادگیری الگوریتم ژنتیک ابداع کنید. این شیوه‌های آموزش می‌توانند شامل آموزش الگوریتم ژنتیک با مثال، آموزش الگوریتم ژنتیک در پایتون، حل نمونه سوال الگوریتم ژنتیک و غیره باشند.

معرفی دوره آموزش الگوریتم ژنتیک

در دوره آموزش الگوریتم ژنتیک (الگوریتم تکاملی) مکتب خونه، به آموزش کامل و جامع مفاهیم پایه‌ای این حوزه پرداخته می‌شود. پس از یادگیری اصول اولیه، مفاهیم تدریس شده به صورت عملی توسط زبان‌های برنامه‌نویسی و ابزارهای گوناگون اجرا می‌شوند تا درک نحوه کارکرد آن‌ها آسان‌تر شود. تمرکز این دوره بر روی حل مسائلی است که اغلب با عملیات‌های ریاضی در هم تنیده شده‌اند که برای حل این مسائل پیچیده، روشی غیرمعمول نیاز است که این روش که الگوریتم ژنتیک نامیده می‌شود.

سطح دوره آموزش الگوریتم ژنتیک مکتب خونه مقدماتی است و برای تماشای ویدیوهای آموزشی و حل تمرینات قرار گرفته در بین ویدیوها، مجموعا به ۱۹ ساعت زمان نیاز است. علاوه بر این، دوره آموزش الگوریتم ژنتیک، با مدرک معتبر از طرف مکتب خونه همراه است که برای دستیابی به آن، باید حد نصاب نمره را دریافت کنید. با استفاده از مدارک معتبر مکتب خونه، می‌توانید شانس استخدام و کاریابی خود را افزایش دهید.

سرفصل‌های دوره آموزش الگوریتم ژنتیک

سرفصل‌های دوره آموزش الگوریتم ژنتیک (الگوریتم‌های تکاملی) در مکتب خونه که توسط آقای آرمان صمیمی تدریس می‌شود عبارتند از:

·        مقدمه‌ای بر الگوریتم‌های تکاملی

·        الگوریتم‌های تکاملی

·        مولفه‌های الگوریتم تکاملی – بخش اول

·        مولفه‌های الگوریتم تکاملی – بخش دوم

·        انواع محبوب الگوریتم‌های تکاملی

·        پیاده‌سازی

·        مباحث تکمیلی

با ثبت نام در این دوره و یادگیری این سرفصل‌ها، می‌توانید به بهترین شکل ممکن مهارت‌های خود را در حوزه الگوریتم ژنتیک تقویت کنید. همچنین با به کارگیری آموزه‌های این دوره، می‌توانید مسائل بهینه‌سازی را در زمینه‌های گوناگون حل کرده تا همواره بهترین پاسخ ممکن را دریابید.

مخاطبین دوره‌های آموزش الگوریتم ژنتیک

اغلب عملیات پیشرفته ریاضی مانند مشتق‌گیری، مشتق ناپذیر بودن برخی از ترکیب‌ها، بهینه‌سازی و غیره با سختی‌های به خصوصی خاصی هماره هستند. شما می‌توانید به کمک آموزش الگوریتم ژنتیک، بر روی این دسته از محاسبات ریاضی تسلط پیدا کنید و آن‌ها را به شیوه‌ای غیرمتداول و آسان‌تری انجام دهید. به همین خاطر، عمده طرفداران دوره‌های آموزش الگوریتم ژنتیک علاقه‌مندان حوزه ریاضیات هستند.  

همچنین با استفاده از دوره آموزش الگوریتم ژنتیک مکتب خونه که خود زیرمجموعه‌ای از الگوریتم‌های تکاملی است، علاوه بر یافتن روش‌های خلاقانه برای حل مسائل ریاضی، می‌توانید مسائل مهندسی را به شیوه‌ای نوین‌تر حل کرده و بازدهی بیشتری را در حین کار تجربه کنید. بدین ترتیب، گروه دیگری از مخاطبان دوره آموزش الگوریتم ژنتیک شامل مهندسان و مدیران است.

آموزش کامل و جامع الگوریتم ژنتیک با مکتب خونه

اکنون که اطلاعات متنوعی در رابطه با الگوریتم ژنتیک به دست آورده‌اید و علاقه‌مند به یادگیری آن هستید، می‌توانید از طریق دوره مکتب خونه به آموزش این حوزه بپردازید. مکتب خونه علاوه بر ارائهٔ دوره‌های آموزشی ویژه، امکانات گوناگونی را در کنار منابع آموزشی ارائه می‌دهد:

o       ارائهٔ تمارین بین درسی برای درک عمیق‌تر مطلب

o       ارائهٔ امکان رفع اشکال توسط راهنمای دوره

o       ارائهٔ مدرک معتبر از طرف تیم مکتب خونه

پس اگر قصد دارید که مهارت‌هایتان را در این حوزه با آموزش genetic algorithm تقویت کنید، همین حالا در این دوره از مکتب خونه نام‌نویسی کرده تا با دید بهتری به بهینه‌سازی و رفع مشکلات مرتبط با آن بپردازید.

در این دوره جامع، به طور کامل با الگوریتم ژنتیک، الگوریتم‌های تکاملی و کاربردهای آنها در حل مسائل بهینه‌سازی آشنا خواهید شد. همین حالا در دوره آموزش الگوریتم ژنتیک شرکت کنید و مهارت خود را در این حوزه ارتقا دهید! در مکتب خونه انواع دوره آموزش برنامه نویسی، آموزش هوش مصنوعی و آموزش ماشین لرنینگ به عنوان مکمل و پیش نیاز این دوره موجود است.

آرمان صمیمی متولد سال 1368 در تهران است. وی دانش‌آموخته کارشناسی ارشد رشته هوش مصنوعی در سال 1395 از دانشگاه صنعتی اصفهان با معدل ممتاز است. او به دلیل سوابق علمی درخشان از سال 1395 عضو بنیاد ملی نخبگان شده است.

مهندس صمیمی از سال 1395 فعالیت ویژه‌ای در حوزه دیجیتال مارکتینگ داشته است. وی همچنین سال‌ها در حوزه استارتاپ‌های بین المللی هوش مصنوعی، به عنوان مدیر تحقیق و توسعه و مشاور فنی مشغول به کار است و با چند تیم آلمانی و کانادایی همکاری دارد. 

او همچنین در حوزه کاری موفق به اخذ مدارک معتبر و مهمی از کمپانی های مشهور بین المللی شده است که از این میان می‌توان به مدارک معتبر از کمپانی های Google  و IBM  اشاره کرد.

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “آموزش الگوریتم ژنتیک (الگوریتم تکاملی)”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

پیشنهادها
پیشنهاد خریداران دیگر